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Large-scale biodiversity databases have great potential for quantifying long-term trends 
of species, but they also bring many methodological challenges. Spatial bias of species 
occurrence records is well recognized. Yet, the dynamic nature of this spatial bias – 
how spatial bias has changed over time – has been largely overlooked. We examined 
the spatial bias of species occurrence records within multiple biodiversity databases in 
Germany and tested whether spatial bias in relation to land cover or land use (urban 
and protected areas) has changed over time. We focused our analyses on urban and 
protected areas as these represent two well-known correlates of sampling bias in bio-
diversity datasets. We found that the proportion of annual records from urban areas 
has increased over time while the proportion of annual records within protected areas 
has not consistently changed. Using simulations, we examined the implications of this 
changing sampling bias for estimation of long-term trends of species’ distributions. 
When assessing biodiversity change, our findings suggest that the effects of spatial bias 
depend on how it affects sampling of the underlying land-use change drivers affect-
ing species. Oversampling of regions undergoing the greatest degree of change, for 
instance near human settlements, might lead to overestimation of the trends of spe-
cialist species. For robust estimation of the long-term trends in species’ distributions, 
analyses using species occurrence records may need to consider not only spatial bias, 
but also changes in the spatial bias through time.

Keywords: biodiversity change, biodiversity monitoring, citizen science, 
opportunistic data, presence-only data

Introduction

Quantifying population and distribution trends in space and time is increasingly 
important for biodiversity monitoring, conservation and related political decisions 
(Yoccoz  et  al. 2001, Harrison  et  al. 2014). Species occurrence records have great 
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potential for biodiversity monitoring because of their large 
taxonomic, geographic and temporal scope (Chandler et al. 
2017, Fink et al. 2020). Occurrence record databases com-
prise different types of data, ranging from opportunistic (i.e. 
incidental observations) to standardized (e.g. collected fol-
lowing protocols and sampling design) (Isaac and Pocock 
2015); however, often all the data are treated as a single 
data type (‘presence-only’). Species occurrence records have 
been used for many studies on the spatial patterns of spe-
cies’ distributions (Feeley and Silman 2011, Beck et al. 2014, 
Sullivan et al. 2017, Bradter et al. 2018), and are increasingly 
used in studies about temporal trends (Powney et al. 2019, 
Outhwaite et al. 2020, Bowler et al. 2021, Sheard et al. 2021, 
Zattara and Aizen 2021). However, the data are often spa-
tially biased (Geldmann et al. 2016), raising concerns about 
their validity and use in ecological research (Burgess  et  al. 
2017, Bayraktarov  et  al. 2019). Quantifying the extent of 
these spatial biases, and especially whether the biases have 
changed through time, is important for the continued  
use of occurrence records in studies about temporal change 
of biodiversity.

Spatial bias in species occurrence records can be 
seen at a range of different spatial scales (Boakes  et  al. 
2010, Amano  et  al. 2016, Freeman and Peterson 2019, 
Girardello  et  al. 2019). At the global-scale, more occur-
rence records are found in countries with developed biodi-
versity data infrastructure and higher GDP (Collen et al. 
2008, Meyer  et  al. 2015, Callaghan  et  al. 2021c). At 
regional or national-scales, spatial bias is commonly asso-
ciated with human population density, settlements and 
roads (Kelling et al. 2015, Geldmann et al. 2016, Mair and 
Ruete 2016, Hugo and Altwegg 2017, Dissanayake et al. 
2019, Girardello  et  al. 2019, Husby  et  al. 2021). The 
higher number of biodiversity records near urban areas 
can reflect the local densities of observers as well as the 
behavior of observers to visit the most accessible places 
from their home. Many occurrence records are also col-
lected in protected areas or hotspots of species rich-
ness (Geldmann  et  al. 2016, Hugo and Altwegg 2017, 
Jimenez-Valverde  et  al. 2019). All of these biases poten-
tially limit the use of the data within heterogeneous 
occurrence record databases compared with data from 
a more structured stratified sampling design (Buckland  
and Johnston 2017).

While these spatial biases, and their influence on ecologi-
cal models, are widely recognized (Beck  et  al. 2014, Hugo 
and Altwegg 2017, Fournier  et  al. 2019), most studies 
have focused on temporally static patterns of bias. Hence, 
few studies have examined whether, and to what extent, 
spatial biases have changed over time. Annual numbers of 
occurrence records within databases such as the Global 
Biodiversity Information Facility (GBIF), however, have mas-
sively increased over time (Boakes et al. 2010, Petersen et al. 
2021). Additionally, 70–80% of all species occurrence data 
in Europe are estimated to have been collected by volunteers 
(Schmeller  et  al. 2009). The increasing number of occur-
rence records reflects a combination of increased awareness 

and participation of citizen science (defined here as any vol-
untary data collection – recording species either opportu-
nistically or by following a standardized protocol) and new 
technologies for recording and submitting species observa-
tions (Chandler et al. 2017, Mihoub et al. 2017), as well as 
mobilization of other data sources, such as museum and lit-
erature records (Boakes et al. 2010). Such increasing numbers 
of records might also be associated with changes in the spatial 
bias in the data. In a butterfly dataset in the United States, 
for example, inventory completeness was greater in regions of 
high human density and this association became stronger over 
time (Shirey et al. 2021). Changes in the strength and pattern 
of spatial biases of species occurrence records could occur for 
many reasons – land use change at sites already being moni-
tored, changes in where people collect data, and/or changes 
in the types or behaviours of people and projects collecting 
and reporting data (Isaac and Pocock 2015, August  et  al. 
2020, Petersen  et  al. 2021). As species occurrence data are 
being increasingly used to estimate species’ long-term trends, 
there is a danger of inferences being affected by changing  
spatial bias.

We studied the spatial bias of species occurrence data and 
the implications of changing spatial biases for biodiversity 
change research, using a combination of empirical analysis 
of species occurrence record databases and simulations. We 
focused on spatial bias towards urban and protected areas since 
previous studies have documented spatial bias with respect to 
these land covers/uses (Kelling et al. 2015, Geldmann et al. 
2016, Mair and Ruete 2016, Hugo and Altwegg 2017, 
Dissanayake et al. 2019, Girardello et al. 2019, Husby et al. 
2021). We used multiple datasets from different databases, 
which include citizen science and other sources of species 
occurrence records, for birds, amphibians, butterflies and 
plants. For each dataset, we quantified spatial sampling bias 
in relation to each type of land cover/use and tested whether 
the strength of the bias had changed through time. Using 
simulations, we then explored the effects of changing spatial 
bias on estimated species’ distribution trends, assuming dif-
ferent sampling scenarios, patterns of environmental change 
and species’ habitat associations.

Methods

Empirical study

Biodiversity data
We used three datasets differing in the proportion of records 
from citizen science. These datasets came from 1) GBIF 
(<www.gbif.org/>); 2) Naturgucker (<www.naturgucker.
de>) and 3) Observation.org (<https://observation.org/>). 
The latter two platforms are specifically targeted towards 
citizen scientists while GBIF includes a mix of records from 
citizen science (also from these platforms), as well as data 
from museums and research institutions. In each dataset, we 
retrieved species occurrence records for selected taxa: amphib-
ian/reptiles; birds; butterflies/moths and vascular plants. We 
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focused on these groups because they are popular targets 
of citizen science. For simplicity, we subset the datasets to 
records collected within a three-month period in the year, 
based on when the number of records peaked (April–June 
for all except butterflies/moths, which peaked June–August). 
Additionally, for amphibians/reptiles, we used a dataset of 
occurrence records collected in Saxony, an administrative 
region (federal state) of Germany, compiled from the Central 
Species Database of Saxony by the regional conservation 
agency (<www.natur.sachsen.de/zentrale-artdatenbank-zena-
sachsen-6905.html>), which contained both opportunistic 
and systematic monitoring data. For each dataset, species 
occurrence data were mapped to quadrants of the German 
ordnance survey (TK25 quadrant, ca 5.5 × 6 km) that is 
commonly used in Germany to define the location of species 
observations. Hence, we defined a site as a TK25 quadrant. 
For all datasets, we used available species occurrence data 
between 1992 and 2018 to align with the available land cover 
data.

Land-use data
We used the European Space Agency Climate Change 
Initiative land cover dataset (ESA 2017), providing annual 
data at a 300 m resolution for each year between 1992 and 
2018. We calculated for each year and TK25 quadrant the 
proportional cover of urban cover. For spatial information 
on protected areas, we used GIS shapefiles from the German 
Federal Agency for Nature Conservation (Bundesamt für 
Naturschutz, BfN) – focusing on the protected area catego-
ries of nature reserves (Naturschutzgebiet) and national parks 
(Nationalparks) that have the highest level of protection in 
Germany. In 2018, there were 8833 nature reserves and 16 
national parks across Germany.

Statistical analysis
To examine spatial bias, we tested the effect of land cover/
use on the probability of a site being visited in each data-
set. In the datasets, people report species observations and 
not specifically when a site has been visited for a survey. We 
defined a site as visited when there was at least one species 
occurrence record in a site within a year, which indicated 
that some kind of survey by a person had taken place. While 
there may also be within-year seasonal variation in visitation 
patterns in relation to land cover/use, we decided to focus 
only on annual patterns since that was sufficient for our pur-
pose and most relevant for questions about long-term trends 
focusing on between-year changes. We first used a general-
ized linear model (GLM) with binomial error distribution 
to analyze the main effect of urban cover and protected area 
on whether a site was visited (a binary variable, yes or no) 
across all years. Under random sampling, site visit probabil-
ity should be independent of land cover/use (i.e. a regression 
coefficient close to zero). We then examined the evidence for 
changing spatial bias by including year and the interaction 
between land cover/use (urban and protected area) and year 
on whether a site was visited. Under the null assumption of 
no change in spatial bias through time, there should be no 

significant interactions between land cover/use and year on 
the probability of site visitation.

Changes in spatial bias with respect to land cover/use 
could be caused by multiple underlying processes, including 
1) expansion of surveys to new sites, e.g. by new recorders; 2) 
no expansion but rather a shift in the frequency with which 
different sites are sampled; or 3) faster changes in land cover/
use at sites that are already being sampled (see Supporting 
information for details). To examine the evidence for these 
different possibilities, we calculated the Pearson correlation 
coefficients between the estimate of spatial bias in a given 
year and the total number of recorders and sites surveyed, as 
well as the proportion of new sites or recorders (according to 
their first year of survey). Recorder information was not avail-
able for the Observation.org dataset. We also explored the 
relationship between urbanization (urban cover change dur-
ing 1992–2018) and the proportion of years (two-column 
response) in which a site was sampled using a binomial GLM.

We repeated all the models while accounting for spatial 
autocorrelation, based on a Matérn correlation structure using 
the geographic coordinates of each TK25 quadrant, using 
the spaMM R package (Rousset and Ferdy 2014). We used 
a Matérn correlation structure because our coordinates were 
arranged in a regular grid and this structure allowed the spa-
tial autocorrelation to depend on the distance between them. 
Ideally, for most ecological questions, spatial bias should 
be not present regardless of the spatial pattern, but spatial 
autocorrelation of visits may contribute to the estimated spa-
tial bias. In fact, similar patterns were found. In the main 
text, we focus on the results for the largest datasets (GBIF, 
Naturgucker) but show the results for all in the SI based on 
the models that accounted for spatial autocorrelation.

Simulations

While our empirical study informed on the evidence for 
changing spatial bias, we used simulations to examine the 
broader implications of changing spatial bias for studies 
using these types of data sources to infer long-term species 
population changes. We compared the type of sampling bias 
observed in our empirical analysis with alternative sampling 
scenarios. We also tested the effects under different scenarios 
for land-use change and species habitat preference.

Species dynamics
We assumed a landscape of 500 sites that varied in urban 
cover. For convenience, we assumed urban cover to be uni-
formly distributed among sites between −1 and 1, where −1 
indicated low urban cover and 1 indicated high urban cover. 
We could have scaled urban cover between 0 and 100% but 
this would not change our results. We modelled the dynamics 
of one species whose occupancy probability was affected by 
urban cover and had an occupancy probability of 0.5 at mean 
urban cover (represented by a zero value). For our simula-
tion, we initially assumed that a species was an urban avoider, 
with a negative effect (coefficient of −2 on the logit-scale) of 
urban cover on its occupancy, and we therefore present the 
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results of the urban avoider in the main results. However, 
in further analyses, we varied the species’ habitat preference 
by also assuming a species was an urban exploiter and urban 
generalist (see Table 1 – ‘Species habitat preference’). A nega-
tive assumption was selected for the main analysis since there 
are generally more urban avoiders than exploiters within a 
given taxon group (Callaghan  et  al. 2021a, b). Occupancy 
states for each site were drawn from a Bernoulli distribution 
of the occupancy probability to determine species presence 
or absence. For simplicity, urban cover was assumed to be the 
only deterministic factor affecting species occupancy; hence, 
urban cover change also caused species occupancy change.

Environmental change
We assumed two time-points during which urban cover 
within a grid changed according to different change sce-
narios (Table 1, ‘Environmental (urban) change scenarios’). 
Urban change was either uniform (all sites increased in urban 
cover by the same amount) or clustered (regional urban 
cover increased by the same total amount, but it was concen-
trated in the sites with above-average urban cover). Clustered 
change was intended to mimic urban expansion within and 
at the edge of urban areas. Clustered change is more typical of 
real-world contexts due to spatial heterogeneity in pressures, 
but we included uniform change to compare the effect of dif-
ferent change patterns.

Sampling scenarios
We created different spatial sampling scenarios to reflect 
urban sampling bias, and temporal increase in urban sam-
pling bias, and contrasted these with random sampling 
(Fig. 1). We assumed that each site was visited at each time 
point according to some probability that varied among dif-
ferent sampling scenarios (see Table 1, ‘Sampling scenar-
ios’). For simplicity, we assumed perfect detection, i.e. if a 
site was visited and the species was present, then the species 
was always detected. In sampling scenarios full and random, 
sites were sampled fully (i.e. all sites visited) or a proportion 
of sites was visited at random (20% of sites – to assume 
a moderately low level of sampling typical of real world 
sampling), respectively. In scenarios bias and bias+, sites 

were not sampled at random; instead, site visit probability 
increased linearly (coefficient of 2 on the logit-scale) with 
urban cover. In scenario bias+, this coefficient increased by 
a factor of 3 in the second time point, i.e. sampling bias 
increased through time. Site visit (yes or no) was then deter-
mined by Bernoulli draws of the site visit probability. Across 
all sampling scenarios and time-points, we controlled for 
the total number of visited sites (20% of sites except for 
full) and kept site visit probability at 50% at the mean urban 
cover within a landscape to control for total sampling effort. 
We ran 1000 replications for each set of scenario combina-
tions. Bias+ corresponded to the pattern observed in our 
empirical datasets.

Statistical analysis
We calculated the occupancy proportion (number of sam-
pled sites in which the species was present) for each time 
point and simulation replicate. We also calculated the occu-
pancy change as the differences in the log-odds of occupancy 
between time points. We used these sample estimates as the 
best estimates for species occupancy patterns and changes. 
We did not attempt to control for the sampling bias since 
we were interested in understanding the implications of a 
naive analysis. We also ran formal models for hypothesis tests 
of the evidence for species occupancy change, using gener-
alized linear mixed effects models (GLMM) with binomial 
error distribution, including species observation (present 
or absent) as the response, year as the explanatory variable 
and site as a random effect. Using these models, we calcu-
lated the Type I error (number of significant (p < 0.05) year 
effects under no urban or species occupancy change). We 
used R ver. 4.0.2 (<www.r-project.org>) for simulations  
and analysis.

Results

Empirical patterns

In both GBIF and Naturgucker datasets, sites with higher 
urban cover were, on average, more likely to be visited than 

Table 1. Simulation scenarios.

Sampling scenarios:
Full All sites sampled 
Random 20% sampled – at random
Bias 20% sampled – urban sites overrepresented (constant spatial bias)
Bias+ 20% sampled – urban sites overrepresented (increasing spatial bias)
Environmental (urban) change scenarios:
No change No urban cover change
Uniform change Uniform increase in urban cover (all grids increase in urban cover)
Clustered change Clustered increase in urban cover (only grids with above-average urban cover increase in 

urban cover)
Species’ habitat preference
Urban exploiter Species occurrence probability is positively associated with urban cover
Generalist Species occurrence probability is not associated with urban cover
Urban avoider Species occurrence probability is negatively associated with urban cover (main 

assumption)
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sites with lower urban cover, and this pattern became stron-
ger over time (Fig. 2, Supporting information). Overall, 
mean site visit probability increased between 1992 and 
2018, consistent with the increase in the number of submit-
ted occurrence records (Supporting information). However, 
visit probability increased more strongly for sites with high 
urban cover than for sites with low urban cover, leading to 
significant interactions between urban cover and year in 
most cases (Fig. 2, Supporting information). Similar pat-
terns were found in the regional conservation agency data for 
amphibians (Supporting information) but were weaker in the 
Observation.org data, which contained the smallest number 
of records (Supporting information).

Across all years, visit probability also tended to be spa-
tially biased towards protected areas within both the GBIF 
and Naturgucker datasets (Fig. 3, Supporting information). 
However, the strength of the bias towards protected areas did 
not consistently change through time (Fig. 3, Supporting infor-
mation). Again, similar patterns were found in the regional 
conservation agency data for amphibians (Supporting informa-
tion) and the Observation.org data (Supporting information).

Different processes might explain the increasing spatial 
bias towards urban areas (Supporting information). Annual 
bias estimates towards urban cover were most strongly asso-
ciated with the total numbers of recorders (r > 0.5 in 8/8 
datasets) and total number of sites surveyed (r > 0.5 in 10/12 

datasets). But we found only weak associations between 
annual bias and the proportion of new recorders or new sites 
in a given year (Supporting information). There was also 
a positive effect of urban cover change on the proportion 
of years in which a site was sampled, i.e. sites undergoing 
urbanization were visited in a higher proportion of the years 
between 1992 and 2018 (Supporting information).

Simulations

We first present detailed results for a theoretical species that 
is negatively associated with urban land cover, and then later 
show effects for all three types of species that are negatively, 
neutral or positively associated with urban land cover.

Changes under no urban change
Under the ‘no urban change’ scenario, true species occu-
pancy did not change between the time points. Sampling 
all sites (full) or random sampling (random) led to the same 
mean proportion of occupied sites (Fig. 4A) and no change 
in the proportion of occupied sites between time points 
(Fig. 4B). With sampling bias (bias and bias+), the estimated 
proportion of occupied sites was underestimated because the 
species was more common at low urban cover sites while sites 
with high urban cover were preferentially sampled (Fig. 4A). 
However, provided the sampling bias did not change over 

Figure 1. Schematic figure of the simulation scenarios in theoretical landscapes assuming two time points T1 and T2 with varying degrees 
of urban cover change between T1 and T2 (no urban cover change, uniform urban cover change or clustered urban change). Sample loca-
tions in each simulation replicate are shown by the white squares. Sites are either sampled at random, or spatially biased (bias) or increas-
ingly spatially biased through time (bias+) towards urban cover. The colour scale from grey through orange to green indicates a gradient 
from high to low urban cover.
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Figure 2. The effect of urban cover on the probability that a site is visited within a given year in each empirical dataset. Lines are coloured 
to reflect the order of the years from older (purple = 1992) to more recent (yellow = 2018). Left: each line shows the relationship between 
urban cover and site visit probability (grouped into two-years to simplify visualization) as predicted by a binomial GLM. Right: the effect 
of urban cover (logit-scale) on site visit probability as estimated by a binomial GLM in each year. Bars show the mean and 95% confidence 
intervals of the estimated effects. The dashed line is the line of no effect.



7

Figure 3. The effect of protected area on the probability that a site is visited within a given year in each empirical dataset. Lines are coloured 
to reflect the order of the years from older (purple = 1992) to more recent (yellow = 2018). Left: each line shows the relationship between 
protected area and site visit probability (grouped into two-years to simplify visualization) as predicted by a binomial GLM. Right: the effect 
of protected area (logit-scale) on site visit probability as estimated by a binomial GLM in each year. Bars show the mean and 95% confi-
dence intervals of the estimated effects. The dashed line is the line of no effect.
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time (scenario bias), sampling still yielded the correct 
assessment of no change in the proportion of occupied 
sites between the time points (Fig. 4B). By contrast, when 
sampling bias increased between the time points (scenario 
bias+), inferred change in the proportion of occupied sites 
was biased and the species was estimated to decline (Fig. 4B). 
Testing the significance of the occupancy change resulted in 
greater Type I error (i.e. false positives over 20% of simula-
tions) under bias+ (Supporting information) compared to 
the other sampling scenarios (less than 5% false positives).

Changes under urban change
Urbanization between time points caused a decline in the 
occurrence of the species, as assumed by the underlying model 
of an urban avoiding species (Fig. 4B). The effect of constant or 
increasing sampling bias on the estimated occupancy change 
depended on whether urban change was uniform across all 
sites (i.e. if all sites increased in urban cover) or clustered (i.e. if 
only sites with medium or high urban cover increased in urban 
cover). Constant spatial bias (bias) under a uniform pattern of 
urban change led to similar estimates of change as random 
sampling, with species occupancy declining. However, con-
stant spatial bias led to an overestimation of the decline under 
a clustered pattern of urban change (Fig. 4). Increasing spatial 
bias (bias+) led to an overestimation of species declines under 
both uniform and clustered patterns of urban change (Fig. 4).

Overall, the patterns can be explained by how each sam-
pling scenario captured the distribution of urban change in 
the landscape, which was driving species occupancy change 
(Fig. 5). Under no or uniform urban change, sampling ran-
domly or with a constant spatial bias both captured urban 
change in a representative way. Mean sampled urban cover was 
higher under constant biased sampling than random sampling; 
however, the change in sampled urban cover between the time 
points was similar for both (Fig. 5). This explains why both 
sampling scenarios led to similar estimates of species occupancy 
change (Fig. 4B). With increasing spatial sampling bias, urban 
cover at the sampling sites increased at the second time point, 
leading to overly high estimates of species declines (Fig. 4B).

Under clustered urban change, both constant and increas-
ing spatial sampling bias resulted in unrepresentative samples 
of urban change – shown by mean urban cover at sampling 
sites increasing between time points to a greater extent than 
with random sampling (Fig. 5). Hence, under both these 
sampling scenarios, urban change and species occupancy 
change were oversampled, explaining the overestimated spe-
cies declines (Fig. 4B).

Effect of species’ habitat preferences
In the previous results, we assumed that species occupancy 
declined as urban cover increased between the two time 
points (‘urban avoider’). We also ran additional simulations 

Figure 4. Violin plots showing the effect of each sampling scenario and urban change pattern on (A) the observed proportion of occupied 
sites and (B) the observed change in occupancy (log-odds ratio of occupancy proportion between the two time points) across 1000 simula-
tions. In all scenarios, the species was assumed to be negatively affected by urban cover. Scenario full was when all sites are sampled and 
hence represents the truth. Scenario random was random sampling. Scenario bias was constant spatial bias (towards urban cover). Scenario 
bias+ was increasing spatial bias (towards urban cover) between the time points. The dashed horizontal line in B represents the line of no 
change in occupancy proportion between the two time points.
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to explore the effects of different species’ habitat prefer-
ences (Fig. 6). Under no or uniform urban change, species 
association did not matter provided that the sampling bias 
was constant through time (bias). Under all other scenarios 
(increasing bias, bias+, in all urban change patterns, or con-
stant bias with clustered urban change), the strength of the 
bias in the estimated occupancy change increased with the 
strength of species habitat association.

For urban exploiters (species with a positive association with 
urban cover), this meant that species increases were overesti-
mated; while for urban avoiders, declines were overestimated. 
For a generalist species (species with no association with urban 
cover), neither sampling bias nor the pattern of urban change 
had any effect on the estimated occupancy change.

Discussion

Databases of species occurrence records are increasingly used 
to quantify large-scale biodiversity patterns in space and time 
(Theobald  et  al. 2015, Chandler  et  al. 2017). Many studies 

have already raised concerns associated with spatial biases in 
these databases (Geldmann et al. 2016, Girardello et al. 2018) 
and begun to develop solutions to account for spatial biases 
(Johnston et al. 2020). Here, we highlight an overlooked form 
of bias – changing spatial bias through time – with implica-
tions for biodiversity change assessments using species occur-
rence records collected without a coordinated sampling design. 
Specifically, we found evidence that sampling bias towards urban 
areas has become stronger in recent years. While we focused on 
German datasets of species occurrences, similar data are avail-
able for many other countries; hence, we expect to find the 
same patterns elsewhere. Our simulations suggest that effects of 
spatial sampling bias depend on how it affects sampling of the 
underlying land-use drivers of species trends. Biased estimates 
of species population change arise when the underlying drivers 
of species change are not representatively sampled.

Changing spatial sampling bias

Taxonomic and geographic biases of databases are well-stud-
ied (Meyer et al. 2015, Troudet et al. 2017), but few studies 

Figure 5. Violin plots showing the sampled urban cover (mean urban cover across sampling sites) at each time point for each sampling 
scenario and environmental change scenario across 1000 simulations. Scenario random was random sampling. Scenario bias was constant 
spatial bias (towards urban cover). Scenario bias+ was increasing spatial bias (towards urban cover).

Figure 6. Effect on the bias of the occupancy change estimate of species habitat association with urban cover – occupancy of a species can 
have a negative association (urban avoider species), neutral association (i.e. association at zero – a generalist species) or positive association 
(urban exploiter species) with urban cover. Bias was assessed as the difference in the log-odds ratio of occupancy change between each sam-
pling scenario (bias reflecting constant bias or bias+ reflecting increasing bias) and the full sampling scenario. In all the previous main analy-
ses and figures, a negative association was assumed.
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have examined how species occurrence records are biased with 
respect to land cover or use change or biodiversity change 
drivers (Gonzalez et al. 2016, Shirey et al. 2021), or how spa-
tial bias might have changed through time. In a recent study 
of butterflies in North America, the association between 
local human population density and sampling completeness 
(ratio between observed and expected species) became more 
strongly positive over time, based on observations in GBIF, 
iDigBio and eButterfly (Shirey  et  al. 2021). These findings 
are consistent with our own since human population density 
and urban cover are commonly strongly positively correlated. 
Taken together, it is likely that changing spatial bias of spe-
cies occurrence records is widespread across different regions 
and databases.

Our example databases varied in data sources and hence 
different processes might be responsible for the chang-
ing spatial sampling bias in each. Different data sources of 
species occurrence records, including museum collections, 
scientific surveys, conservation monitoring and citizen sci-
ence, are known to have different spatial biases and cover-
age (Geldmann et al. 2016, Speed et al. 2018, Petersen et al. 
2021, Shirey  et  al. 2021). Moreover, citizen science itself 
is highly variable with some forms of citizen science asso-
ciated with opportunistic presence-only records and other 
forms associated with robust data collected by coordinated 
projects with a standardized sampling protocol and spatial 
design (Isaac and Pocock 2015, Dobson  et  al. 2020). For 
heterogeneous databases, such as GBIF, increasing spatial 
bias over time may reflect an increased number of records 
from opportunistic citizen science data that are more prone 
to bias due to the lack of a coordinated sampling design 
(Boakes et al. 2010, Shirey et al. 2021). By contrast, within 
databases focused towards opportunistic or unstructured 
citizen science data, such as Naturgucker and Observation.
org, increasing spatial bias might arise due to shifts in the 
types of citizen science projects and their participants. 
Barriers to participate in citizen science have lowered in 
the last decade due to new outreach projects and smart-
phone applications, leading to greater inclusion of people 
with lower expertise. Newer participants of citizen science 
may differ in their recording behaviour and be less likely 
to visit remote places for species observation compared 
with citizen scientists of earlier decades. In our analysis, 
we could not explicitly link increased bias to new partici-
pants but our test was limited by the variable quality of  
metadata on observers.

Implications of changing bias for biodiversity 
change research

Assessments of biodiversity change using species occurrence 
record databases have been criticized because of spatial biases 
in the underlying data (Cardinale 2014, Gonzalez et al. 2016, 
Fournier et al. 2019, Mentges et al. 2021). Our simulations 
showed how the effects of spatial sampling bias depend on a 
combination of changes in sampling bias through time, the 
pattern of environmental change, and the habitat associations 

of the species, which together determine whether drivers of 
species change are sampled representatively. For instance, 
oversampling of sites undergoing urbanization – either due 
to increases in the strength of spatial sampling bias through 
time or clustered environmental change with constant spatial 
sampling bias – leads to overestimation of declines of spe-
cies that are negatively affected by urban cover. Since these 
effects increase with the strength of species’ habitat associa-
tions, sampling biases are less likely to affect estimations of 
the trends of generalist species.

Several methods have been proposed to deal with the 
spatial bias of presence-only citizen science data in order to 
extract robust information of species’ biodiversity patterns, 
but they mostly have assumed spatial sampling biases are con-
stant over time. For instance, some studies have proposed the 
use of sampling weights, for instance, by upweighting under-
sampled areas, which has been more often applied to account 
for unrepresentativeness of sampling locations within stan-
dardized monitoring programs (McRae et al. 2017, Boersch-
Supan et al. 2019, Johnston et al. 2020). The bias that we 
identify in our analysis can be regarded as a form of pref-
erential sampling because the same environmental driver 
affects both species occupancy change and sampling loca-
tions. A common solution for preferential sampling involves 
modelling both the processes affecting species dynamics and 
those affecting site selection or visitation (Botella et al. 2021, 
Fandos et al. 2021). Pooling information from different data 
sources can often help separate species dynamics from the 
spatial biases in sampling (Dorazio 2014, Fithian et al. 2015, 
Pacifici et al. 2017). For instance, a promising new approach 
involves simultaneously modelling presence-only data along 
with standardized count or presence/absence data in so-called 
integrated distribution models (Dorazio 2014, Fithian et al. 
2015, Pacifici et al. 2017).

Other studies have considered how spatial biases might 
be reduced by guiding the data collection of citizen scientists 
so that their sampling is more coordinated and representa-
tive (Callaghan  et  al. 2019a, b). For instance, heat maps 
could be used to visualize areas that are currently unders-
ampled and hence where data collection would be especially 
useful for science. Since spatial bias is not the only issue 
that arises with opportunistic citizen science data (Altwegg 
and Nichols 2019), the value of opportunistic records 
could also be improved by more detailed metadata, e.g. 
on whether a set of observations reflect a complete check-
list, enabling absence records to be inferred e.g. as used in 
eBird (Kelling et al. 2019), which is typically unknown in 
most species occurrence record databases. Also, promotion 
of more systematic biodiversity monitoring schemes with 
a proper sampling design, where reporting and sampling 
biases have been minimized, could serve to contribute more 
robust data but also play a pedagogical role in informing 
participating citizens about the importance of spatial sam-
pling design. However, even coordinated citizen science 
projects can be affected by spatial sampling bias, due to dif-
ferences in site-selection and retention rates with respect to 
land cover or use (Zhang et al. 2021).
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Outlook

Large biodiversity databases have created huge opportunities 
for ecologists to ask questions about biodiversity patterns at 
large spatial scales ( Theobald et al. 2015). The lack of stan-
dardized long-term monitoring for most taxa makes these data 
also especially valuable for the assessment of species change 
through time. At the same time, developments in statisti-
cal modelling have made it possible to account for many of 
the biases and sources of heterogeneity within heterogeneous 
data (Isaac  et  al. 2014). Increasing data bias towards urban 
areas might represent a challenge for some ecological ques-
tions but may also signal some opportunities. Large amounts 
of data within and nearby urban areas might provide natural 
experimental gradients to examine the impacts of future envi-
ronmental scenarios, including climate warming (Lahr  et  al. 
2018). Also, for promoting conservation awareness, increased 
data collection in urban areas may reflect an opportunity for 
greater engagement and reach across society of citizen science 
(Miller 2005) as well as increased value of urban green space. 
However, increasing amounts of data within urban areas may 
not fill data gaps in more remote areas that remain unders-
ampled (Shirey  et  al. 2021). Hence, our results suggest that 
more intense efforts are needed to encourage data collection in 
a broader range of land covers and uses, near and remote from 
urban areas (Callaghan et al. 2019b). Until then, assessments 
of biodiversity change using heterogeneous databases should 
consider how temporal trends in spatial sampling bias might 
affect estimates of species long-term change.
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